
spending s ta t ionary  p rob lem (1.2). In addition, if "y(x, t ) =  %o(X) for  t_> T,o, then the solution of the prob lem (1.1) 
�9 se t t les  re la t ive  to the solution of t h e p r o b l e m  (1.2) af ter  a finite t ime Too. 

; i  

COROLLARY 2. (Theorem on Asymptot ic  Stability of a Potential  Flow}. Under the conditions of T h e o r e m  
3.2 the potential  flow t~(x) is asymptot ical ly  stable re la t ive  to smal l  pe r tu r t~ t ions  which a r e  potential at the 
ent ry  of the region.  

The author exp re s se s  his grat i tude to A. V. Kazhikhov for the valuable observat ions  during the appraisa l  
of the resu l t s  of the investigation. 
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L I Q U I D  L A Y E R S  

O. V. V o i n o v  

OF T HE B O U N D A R Y  IN M O V I N G  

UDC 541.24 : 532.5 

In this paper c reeping  flows in thin l ayers  of a viscous liquid a re  discussed with the capi l lary  fo rces  
taken into account, and solutions descr ibing the inclination angles of the boundary a r e  found. The contact angle 
of a liquid on a solid sur face  in the s tat ic  s ta te  is expressed  in t e rms  of the specif ic  sur face  energies .  Upon 
movement of the liquid the contact  angle (dynamic} differs  f r o m  the s ta t ic  value. A v e r y  thin , ,precursor"  f i lm 
can be observed  in f ront  of the liquid mass  which is spreading over  the solid sur face  [1, 2]. The re  a re  indica- 
t ions to the effect  that the value of the dynamic contact  angle depends on the viscous fo rces  [3]. 

1. Established Flow of a Liquid Layer  over  a Dry Surface and the Contact Angles.. The p r e s s u r e  p inside 
a thin 'liquid layer  on a flat solid sur face  differs  f r o m  the p r e s s u r e  P0 in the gas by the amount of the capi l la ry  
differential  p=p0-o '82h/SxZ (or is the su r face  tension coefficient;  x is the coordinate  along the layer ;  and h is 
the thickness of the layer) .  

The equation of motion of the layer  in the case  of smal l  lqeynolds numbers  under the action of capi l la ry  
forces  can be wri t ten with the help of the hydrodynamical  theory  of lubricat ion as  

Non-s teady-s ta te  solutions of this equation a r e  investigated in the l inear  approximation in [4]. Let us con- 
s ider  s t eady-s ta te  solutions in the nonlinear  formulation.  For  a s teady-s ta te  wave 
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h = h ( z  - -  v t ) ,  

and the indicated equation is simplified to 

( e /39)h3d3h /d~  a = vh  + K ,  ~ ~- x - -  v t ,  K = const. (1.1) 

The constant K =0 if the thickness of the layer  h = 0  for ~ >~ 0. This situation cor responds  to the problem 
in which the layer  flows (v > 0) onto a d ry  surface  or runs off the surface  (v < 0). 

Let us assign the inclination angle of the f ree  boundary in the case  of smal l  thickness h m, and let us 
investigate the solutions for  which the free boundary is close to rec t i l inear  

dh/d~  .~ --~,~, h = h,~, (1.2) 

d21i/d~ " --->- O, h -+ 

in the range of large thicknesses  h. 

We will select  the quantity hm extremely  small  f rom the point of view of the applicability of the hydro-  
dynamical  description.  Then it is possible to suppose that the microscopic  angle a m is c lose to the static con- 
tact  wetting angle or the static hys te res i s  wetting angle. The problem formulated has a unique solution if v > 0. 

The meaning of the problem (1.1) and (1.2) Consists of the fact that it descr ibes  the surface profile in 
some small  region close to the edge of the liquid volume for different problems of the motion of macroscopic  
liquid volumes.  For  example, in the case of the motion of a liquid adjoining a gas in a capi l lary the problem 
(1.1) and (1.2) cor responds  to a range of thicknesses  smal l  in compar ison with the diameter  of the capil lary.  
The complete solution can be found by the method of splicing. 

The solution is sought in the fo rm 

dh/d~  = (3~tv/c~)t/3~(s), s = la  (hm/h) .  (1.3) 

The problem (1.1) and (1.2) is reduced to the f o r m  

u " u  2 + u ' u  2 ~- u'"-u = l, (1.4) 

u = - - a m 3 I - i .  '~, s : O; M = 3 ~ v / a ,  

l~tI.l-P,, t ~ 07 8 ~ - - 0 0 .  

Equation (1.4) is not chnnged upon a shift along s. Therefore ,  the solution which sat isf ies the condition at 
infinity has the f o r m  

u -~ u (z ) ,  z = s + C.  (1.5) 

The constant C is determined f rom the equation 

u(  C) = - - ( z m M - 1 / 3 .  (1.6) 

We will determine the asymptot ic  expansion of u(z) as I z [-* ~. To this end it is possible to use an i tera-  
t i re  p rocess  based on the fact that the principal t e r m  on the left-hand side of Eq. (1.4) as [zl--~ oo in the case  of 
the specified condition at infinity is u'u2: 

�9 2 ~ 2 
u~+iui+~ -{- u~u~ § u'i 2 u~ = 1; u 0 = 0, i = 0, 1, 2 . . . .  

Taking account of the three approximations,  the asymptotic  representa t ion  has the fo rm 

lnlzI l ' n I z l - - t / 3 1 n 2 1 z l - - 4  \ (1.7) 
u(z)=(3~) t/3 i + ~  27z2 ~- . . . ] .  

Equation (1.7) is applicable when [z] > 1, and its f i rs t  t e r m  descr ibes  the run of u(z) at z ~ 0 in a qualita- 
t ively c o r r e c t  way. 

Proceeding f r o m  (1.7), we will determine the f o r m  of the solution for different values of C~m M-l/3.  F i r s t  
of all, let us consider  the case  of the flow of a liquid onto a solid surface,  v > 0. In this case u < 0. The root  C 
of Eq. (1.6) var ies  f r o m  -~o to the value C ~ 0 when a toM'1 / s  changes f rom +oo to 0. The difference of the solu- 
tion u(s) f r o m  the f i rs t  t e r m  of the expansion (1.7) is noticeably revealed only when C > - 1  and only for the 
values s ~0.  For  s < - 1  this difference is always insignificant, and as s -* -oo  it tends to zero.  Thus the detailed 
behavior of u(z) for - 1  < z < 0 is not important for the determination of u(s) at Isl>>l. It is sufficient to use the 
f i r s t  t e r m  of the representa t ion  (1.7) for the approximate determination of the root  of (1.6). 
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In the ca se  of a liquid running off, when v < 0, the si tuat ion is m o r e  compl ica ted.  The quantity u > 0. The 
d e s i r e d  solution u(s) is obtained f r o m  u(z), z > 0, by a shift.  It i s c l e a r  that a solution exis ts  only in the finite 
reg ion  - C  < s < 0. The quanti ty u ~ 0 at s = - C .  In connection with this fact  the condition that  lu'u I eS d e c r e a s e  
as I sl i nc reases  is meaningful ly  d i scussed  only on a f inite interval .  This  in terval  should be suff icient ly la rge ,  
and consequently it is n e c e s s a r y  that  C >>1. 

The approx ima te  solution de te rmined  accord ing  to the f i r s t  t e r m  of the a sympto te  (1.7) has the f o r m  

u = ( 3 s -  o~/M)i /~;  C = - -  a ~ / ( n M ) . .  (1.8) 

When a3 m >>3M > 0, the  solution is a sympto t i ca l ly  exact  for  all  values  of s. When a~n ~ 3 IM[ , the so lu-  
t ion gives only a qual i ta t ive p ic tu re  for  the values  s ~  0. However,  it is poss ib le  to show that a m o r e  exact  de-  
t e rmina t ion  of u(s) at s ~ 0 has meaning.  

Let  a~a ~ 3[MJ. In this connection it is poss ib le  to d iscuss  0nly flowing on, s ince C ~ 1  in the p r o b l em of 
running off, and the  inclination angle of the f r ee  boundary  becomes  ze ro  at a quite sma l l  height h ~ 2h m. 

The function u(s) v a r i e s  s ignif icant ly  in the region - 1  X s < 0, i .e. ,  the inclination angle of the f r ee  bound- 
a r y  va r i e s  sha rp ly  in the height r ange  h ~ h m as the height h ch ,nges .  This  fact  means  that t he re  is a sha rp  
jog on the f r ee  boundary  - a m i c r o s c o p i c  "bump".  The "bump" h a s  a th ickness  of the o rde r  of a few molecules .  
With the appea rance  of the "bump" it is poss ib le  to de t e rmine  the mic roscop i c  contact  angle only as  to its o rde r  
of  magnitude,  s ince  the inclination of the f r ee  boundary n e a r  the mic roscop i c  "bump" v a r i e s  grea t ly .  Of course ,  
only a qual i ta t ive descr ip t ion  of  the "bump" is poss ib le  because  this is e s sen t i a l ly  a m ic roscop i c  phenomenon. 

In d imensional  notat ion the condition fo r  the appea rance  of the "bump" in the case  of flowing on has the 
f o r m  

9~vlc~ ~ 3 a~. (1.9) 

The fo rmu la  for  the inclination angle of the f r e e  boundary has,  on the bas i s  of (1.8) and (1.3), the f o r m  

9v~t in h ~i/3, dh ~1,1o) 

as  a function of its height h above the solid sur face .  

According to the definition given above,  the quantity h m N 10-z_10-6cm. One has In(h/hm) ~ 12 for  m a c -  
roscop ic  th icknesses  h ~ 10-2--10 -1 c m  of the layer .  As is evident f r o m  (1.10), the angle ~ va r i e s  weakly with 
height in the m a c r o s c o p i c  region.  Due to this fact  it can be shown that  a dis t inct ly  e x p r e s s e d  contact  angle oc -  

curs .  

According to Eq. (1.10), a nonzero  m a c r o s c o p i c  contact  angle a is exhibited on account of the motion (v> 
0) even if the equi l ibr ium wett ing contact  angle is equal to ze ro ,  a m ~0 .  We note that accord ing  to (1.9) the re  
is a lways a "bump" on the f r e e  boundary in the case  of comple te  wetting. 

In the ca se  of running off of  liquid f r o m  a solid su r face ,  when v < 0, the angle a drops  off with height and 
becomes  ze ro  at  some  r a t h e r  l a rge  height. Upon a continuation of the solution the quantity h pa s se s  through a 
min imum,  and as x--* - ~ ,  the solution is c lose  to a pa rabo la ,  h" > 0. It has been  shown above that the m a c r o -  

i 
- 5  0 5u 

Fig .  1 
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scopic contact angle in the case  of running off exists only in a l imited range of heights h. 

its existence a re  

<< m, h << hm exp (a~(~/9~t] v I). 91 v l~ l  (r 3 

The conditions for 

2. Splicing the Solution with the Meniscus. The asymptotic solution (1.7) permi ts  effectively solving the 
p rob lemwhenthe  c o n d i t i o n h " ~ c o n s t  > 0 as h-*  ~ is set and the constant quantity is small.  A profile of c o n -  
stunt curvature  (h, =const  in the th in- layer  approximation) is called a meniscus.  The transit ion f rom (1.7) to 
a meniscus of smal l  curva ture  can be t raced  out by f i rs t  investigating the exact solutions of the differential 
equation (1.4). The substitution Y=udu/ds  reduces  it to the fo rm d Y / d u = l / Y - u .  

The integral curves  of this equation a re  given in Fig. 1. When lul>>l, the curves  are  s imi lar  to portions 
of the hyperbolas Y = l / u ,  which cor responds  to (1.7). A s  lu[ increases ,  the curves  depart  f r o m  the u axis, 
and the parabola h, =coast ,  i.e., the meniscus,  corresponds  to the limit I~  --~ ~. The s o l u t i o n h " ~ 0 a s  s ~ - ~ o  
is the envelope of the family of solutions. 

The substitution w = u  2 reduces  Eq. (1.4) to the f o r m  

d2wtdz ~ -}- dw/dz = --2 sgn ( u ) I V ~ ,  w = u s. (2.1) 

We further  consider the case  of flowing on, v > 0. It is possible to show that in the case  of running off 
(v < 0) the solution of Sec. 1 is not compatible with a meniscus.  

We will seek a solution in the vicinity of the asymptotic one, taking account of the two t e rms  in (1.7), 

w ---- (3z)2/~(i -}- (2/9)z41n [z]) ~ wl, Iw~[ << w. 

The function w 1 sat isf ies  the equation 

I _ ,  ( i  t w"i-~-wi~--~z uq\---~-z--']nlzt)--0. 

(2 .2)  

(2.3) 

Theso lu t ion  of this equation which increases  as z ~ - ~  is represen ted  in the f o r m  

lnlzl~ w1=clJ~l u3 ~+3+9~ ]e-~+ . . . .  [zJ>>~, 

where c 1 is an a rb i t r a ry  constant. It is possible to find the quantity c 1 after splicing. 

As z - - - - c o  the solution of (2.1) which cor responds  to h"> 0 has the f o r m  

w = ale - z  -~ as -~ w~. 

(2.4) 

(2.5) 

Now w 2--  0 as z --~-r Let us assume the quantity a 1 to be known. It is n e c e s s a r y  for the existence of 
the region of applicability of (2.2) that a 1<<1. This fact is a fundamental res t r ic t ion  of the entire analysis.  We 
note that when a 1 ~ 1 there  exists no region in which the inclination angle of the free boundary var ies  weakly 
with the height. The condition a i<<1 cor responds  to the fact that the occur rence  of a dynamic contact angle is 
possible.  

The splicing of (2.2) and (2.5) permits  determining immediately in the f i r s t  approximation the quantity a 9. 
and the splicing region z ~ z . :  

2 z~-~la] z,]) >> I. (2.6) a t e  - z ~  : (3z,) 2/3, a 2 ~ (3z,) 2/3 (\t + -~- 

Let us find w 2 in (2.5) in o rde r  to accompl ish  the asymptotic splicing. The function w 2 sat isf ies the equa- 
tion 

d~w2/dz 2 ~- du'2'dz = - - 2 / / a ~ e  -~ + a s 

with an accuracy  out to small  quantities of the o rder  of 1 / a  ~. 

The solution of this equation, which vanishes as z --~ -~o, has the f o r m  

1 I(a, e--~ 2) (h,-~,~ -- 21n(12r |./-~2~ e-:~-i))~-2 I / -~e-z-~'  1 

(2.7) 

(2.8) 
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The r ep re sen t a t i on  (2.5) and (2.8) is appl icable  when ~v2[<<w. In this connection the region of its ap-  
p l icabi l i ty  ove r l aps  the region of appl icabi l i ty  of the r ep re sen t a t i on  (2.2) and (2.4). Let us cons ider  values  of 
z such that 

a~e -~ << a.,  iz ~ z , I  << [z,I. 

Using one t e r m  of the expansion into a s e r i e s  in the sma l l  quantity a 1 /a  2e z and two t e r m s  of the expan-  
sion in ( z - z , )  in Eq. (2.8), as  well  as two t e r m s  of the expansion in ( z - z . )  in the f i r s t  t e r m  in (3.2), we r e -  
qui re  a g r e e m e n t  of the r ep re sen t a t i ons  (2.5), (2.8) and (2.2), (2.4). At the s a m e  t ime  we find the quantity c 1 in 
(2.4) and obtain an equation for  a2: 

Within the f r a m e w o r k  of the a c c u r a c y  with which the spl ic ing was pe r fo rmed ,  the function a2(a 1) can be 
found asympto t i ca l ly  f r o m  (2.9) and (2.6) in the f o r m  

a~ = (3 in (t/al) ~- In In (1/al) -b 6 In 2 ~- 2 In 3 - -  3) 2/3. (2.10) 

According  to Eq. (2.5) [with (1.3) taken into account],  the quanti ty |/~a2: is propor t iona l  to the angle a0, 
which f o r m s  a meniscus  with the solid su r face ,  ff one fo rma l ly  continues it into the region h -*0 .  The quantity 
a 1 is e x p r e s s e d  in t e r m s  of the rad ius  of cu rva tu re  of the meniscus  R 0 as 

al = 2eC(h,jR,)((~/3~w)2/~; ao = (3~w/~)l/3V'~. (2.11) 

The quantity C is de te rmined  in a g r e e m e n t  with (1.5). 

We note that  the c h a r a c t e r i s t i c  height h s at which the t rans i t ion occu r s  f r o m  the solution with an incl ina-  
t ion angle,  which s lowly v a r i e s  with r e s p e c t  to height,  to the men i scus ,  on which the cos ine  of the angle v a r i e s  
p ropor t iona l ly  to height,  is equal  to h s ~ 1 / 2 ~ R 0 ,  as  follows f rom (2.6) and (1.5) [with (1.3) taken into account] .  

The condition of appl icabi l i ty  of (2.10) is a1<<l in (2.11). If a 1 is not v e r y  smal l ,  then the rougher  aP- 
proximat ion  (2.6) may  give higher  a c c u r a c y  than (2.10), as usual ly  happens in asympto t ic  solutions.  

3. Flowing of a Liquid Layer  onto a Surface Covered  by a Thin Layer  of Liquid. Let a liquid be moving 
over  a solid su r f ace  onto which a un i form layer  of the s a m e  liquid of th ickness  hoo is deposi ted in advance.  
Then the constant  K----vhoo in (1.1) and the f i r s t  condition of (1.2) is r ep laced  by the condition that in the l imit  
x--*~o the layer  becomes  a mot ion less  un i form one, 

(~/3~])had3h/dx ~ = v(h - -  h~ ) ,  

h " - - *  O, h ~  ~ (x ~ - - o o ) ,  

h - +  h~ ,  x-..~- oo. 

(3.1) 

The coeff icient  j in Eq. ( 3 . 1 )  iS introduced ill connection with the fact  that the p rob l em under d iscuss ion 
r e f e r s  not  only to the motion of a pure  liquid ove r  a f i lm  on a solid su r f ace  (j = 1) but is a lso valid when the 
f r e e  boundary is slowed down due to the effect  of s u r f a c e - a c t i v e  m a t e r i a l s  (j =4). In the case  j =8 we obtain the 
p rob l em of the motion of a liquid over  a f r ee  f i lm of th ickness  h, both of whose boundar ies  a r e  slowed down 
under the act ion of s u r f a c e - a c t i v e  m a t e r i a l s .  If in the la t ter  case  we conver t ,  with the help of a Gali lean t r a n s -  
fo rmat ion ,  to a s y s t e m  of coordina tes  in which the liquid in the region h--* ~o is mot ion less ,  then we obtain the 
p r o b l e m  of the flow of a f r e e  liquid f i lm into a men iscus  (the Plateau boundary) of sma l l  cu rva tu re .  

Let us cons ider  the ca se  of v >  0. It is poss ib le  to show that when v <  0 the re  is no solution of the bound- 
a r y - v a l u e  p rob l em (3.1). Having applied the subst i tut ion of va r i ab l e s  (1.3) with hm=hr o, we obtain 

u,,u~ _~ ~,u~ .~ ~,2~ ~ i - -  e ~, 

u'ue* --~ 0, s - ~  --c~, (3.2) 
u = 0 ,  s = 0  

in place  of (3.1). 

If one neglec ts  the exponential ly sma l l  t e r m s  as s --,-0% then we obtain f r o m  (3.2) the fact  that the a s y m p -  
tote  of u as s --~-r is the s a m e  as that  of the solution o f  Eq. (1.4), i .e. ,  de te rmined  by Eqs. (1.5) and (1.7). The 
constant  C in (1.5) is de te rmined  by the condition u = 0  at s =0. The constant  C is found by means  of n u m e r i c a l  
calculat ions.  It is n u m e r i c a l l y  m o r e  convenient  to solve the t h i r d - o r d e r  equation (3.D than (3.2), s ince the 
integral  cu rve  of (3.2) enc loses  in a smal l  neighborhood the or igin of coordina tes  in the u, s plane. Numer ica l  
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calcula t ions  have pe rmi t t ed  finding C =0.61. At the s a m e  t ime  it is poss ib le  to obtain f r o m  (1.3), (1.5), and 
(1.7), taking two t e r m s  into account,  an asympto t ic  express ion  for  the inclination angle of the f r ee  boundary:  

r = ( 9 ~v/o)~/a[ln (h/ho~) - -  0.61 - -  (t/3) in (in (h/ho~) - -  0,6t)1 ~/3. (3.3) 

As a c o m p a r i s o n  with the exact  n u m e r i c a l  solution shows, the condition of appl icabi l i ty  of the asymptot ic  
Eq. (3.3) is h>  3h~. At h = 3 h ~  the e r r o r  of  this f o rmu la  isat)out 10%. At h___ 8h~ the e r r o r  of Eq. (3.3) is l e ss  
than 2% and d e c r e a s e s  with an inc rease  in h. 

Until now the asympto t ic  behavior  of the inclination angle a was not known. It has not proven  success fu l  
to de te rmine  the na ture  of the l imit ing behavior  of a f r o m  n u m e r i c a l  calculat ions.  The incor rec t  r e su l t  a -~ 
const  as h--* ~ has been obtained in [5] f r o m  n u m e r i c a l  calculat ions.  T h e r e f o r e ,  the final fo rmula  of [5] is in 
e r r o r .  A point of view s i m i l a r  to [5] has been e x p r e s s e d  in [6], where  the exis tence  has been a s sumed  of a 
l imi t ing angle of the meniscus  with the su r f ace  as  the cu rva tu re  of the meniscus  tends to zero .  Actually,  as is 
evident f r o m  Eq. (3.3), no l imit ing inclinati~m angle exis ts  as h ~  ~ .  

Let the liquid fo r ce  the gas out of a cap i l l a ry ,  whereby  the su r f ace  of the cap i l l a ry  is covered  by a f i lm 
whose th ickness  is much l e s s  than its d iamete r .  For  sma l l  angles a 0 the dependence of the angle on veloci ty  is 
given by Eqs. (2.10) and (2.11), where  by h m it is n e c e s s a r y  to understand boo, and the quantity C =0.61. If the 
value of a ~ is insufficiently smal l ,  then it is be t te r  to use  instead of (2.10) the analyt ica l ly  c ruder  fo rmula  
which follows f r o m  (2.6). If a 1 ~ 1, then in genera l  t he re  is no contact  angle. In this case  continuation of the 
meniscus  as fa r  as the solid boundary  h=0  and up to the height of the f i lm h=h~o gives s ignif icant ly different  
values  of a0- Consequently,  the contact  angle has an asympto t ic  meaning,  and it is poss ib le  to de te rmine  it in 
the l imit  of smal l  values  of the p a r a m e t e r  a 1. 

4. The Effect  of van tier Waals  F o r c e s  on the Dynamic Contact Angle. The van der  Waals f o r ce s  can be 
important  on a sma l l  sca le  in the case  of a sma l l  c u r v a t u r e  of the f r e e  boundary.  The p r o b l e m  of the flow of a 
v iscous  f i lm  is d i scussed  in [7] with the neglect  of cap i l l a ry  forces .  The taking of van der  Waa l s  f o r ce s  into 
account can be impor tan t  for  the ca se  of a wett ing liquid with a zero  equi l ibr ium contact  angle ff the veloci ty  of 
the motion is smal l .  

Fo r  sma l l  inclination angles of the f r e e  boundary the effect ive p r e s s u r e  inside the layer  obeys the equa-  
tion 

P = Po - -  odSh/dx~ + A / 6 a h  3. 

The constant  A takes  account of the van der  Waals  f o r ce s  (for example ,  see  [8-10]). /~< 0 for  the case  of 
comple te  wetting. With the van der  Waals f o r ce s  taken into account,  Eq. (1.1) is compl ica ted  somewhat :  

3p. ~ dx  2 6~-~a = h v ,  (4.1) 

Condition (1.2) r e m a i n s  in fo rce  as h--~ ~. It is poss ib le  in the reg ion  of sma l l  th icknesses  to r equ i r e  
h'--~ 0 as h--*0, f o r m a l l y  extending the solution r ight  down to h=0.  

In the d imens ion less  symbols  [ and y 

Eq. (4.1) will take the f o r m  

x = hm((~/31zv)l/s~, h = h m y  (4.2) 

Y~ d~, y a~ g = o ,  = - 2=~  ~a~,] ~ "  ( 4 . 3 )  

The case  fl>>l is interest ing.  In the r ange  of sma l l  y it is poss ib le  to seek  d y / d [  in the f o r m  of a s e r i e s  
in fi-2, a s suming  the t e r m  y~j ' '  in (4.3) to be  sma l l ,  

a---~ = - - ~  (4.4i 

It is poss ib le  to show that the asympto t ic  s e r i e s  in fl-2 is divergent .  Taking m o r e  thsn two t e r m s  into 
account  has no p rac t i ca l  meaning. In the region of l a rge  values of y the f o r m  of the solution ag ree s  with the 
invest igat ions in Sec. 1: 

y' = --31/3(ln y - -  (1/3)1n ]n y - -  cl)1/3, y >> [L (4.5) 
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Comparison of (4.5) and (1.10) with y ~ f l  pe rmi t s  evaluation of the constant in (4.5). The quantity c 1 ~lnf l .  
Consequently,  the height h at which the inclination angle of the f ree  boundary is c lose to zero  is ~ hmfl with 
fl >>1 instead of h m with fl = 0. 

Using Eq. (1.10), it is possible  to show that for  the possible values of the constant A [8] the value fl>>l 
only when a0<<l, where  a 8 is the macroscopic  contact  angle. If the angle a 0 is smal l  and the value of A is suf-  
f ic ient ly  la rge ,  then one should subst i tute into Eq. (1.10) in place of the quantity hm, defined to b e a f e w m o l e c -  
u la r  d i amete r s ,  the quant i ty  

(4.6) �9 h, ._~.  "VIA 112u(r(~13tiv) va 
which is ~/7 t imes  l a rge r .  

According to Eqs. (4.2) and (4.4) and the definition of/3 ~ in (4.3), for  h<<h m 

h = IA l/6apv(x - -  x~). (4.7) 

The so-ca l led  p r e c u r s o r  f i lm ,  which moves  in f ront  of a spreading liquid, has been observed  in the case  
of a v e r y  low wetting r a t e  in exper iments  [1]. Up until now this phenomenon has remained  unexplained [2]. 
Analyzing the two prof i les  of the p r e c u r s o r  f i lm given in Fig. 4 of [1], it is possible to de te rmine  that they a re  
descr ibed ,  within the l imits  of e r r o r  of the exper iments ,  by the curves  h=c( t ) / (x-x0) ,  which cor responds  to 
(4.7). We find f r o m  the data of [1] fo r  the instant t =18 h af ter  the s ta r t  of the spreading that the quantity c ~ 
4 . 1 0  -8 c m 2, while the veloci ty  v N 5" 10 -? era. If one takes account of the va lues /z  =0.27 P and or =27.6 dyn /cm 
[1], then we de te rmine  f r o m  (4.7) the reasonable  value IA[ ~ 10 -13 erg,  which is in agreement  with the typical  
values of the constant A [8]. At the same t ime the quantity h m ~ 10 -5 cm,  according to (4.6). The length of the 
p r e c u r s o r  f i lm, de termined  by the condition hm> h> 10 -? cm,  is equal to ~ 0.3 cm. 
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