sponding stationary problem (1.2). In addition, if y (X, t} = y,, &) for t = T, then the solution of the problem (1.1)
" settles relative to the solution of the problem (1.2) after a finite time Te.

COROLLARY 2. (Theorem on"Asymptotic Stability of a Potential Flow). Under the conditions of Theorem
3.2 the potential flowu,, (%) is asymptotically stable relative to small perturbations which are potential at the
entry of the region,

The author expresses his gratitude to A. V. Kazhikhov for the valuable observations during the appraisal
of the results of the investigation.
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INCLINATION ANGLES OF THE BOUNDARY IN MOVING
LIQUID LAYERS

O. V. Voinov UDC 541.24:532.5

In this paper creeping flows in thin layers of a viscous liquid are discussed with the capillary forces
taken into account, and solutions describing the inclination angles of the boundary are found. The contact angle
of a liquid on a solid surface in the static state is expressed in terms of the specific surface energies. Upon
movement of the liquid the contact angle (dynamic) differs from the static value. A very thin "precursor” film
can be observed in front of the liquid mass which is spreading over the solid surface [1, 2]. There are indica-
tions to the effect that the value of the dynamic contact angle depends on the viscous forces {3].

1. Established Flow of a Liquid Layer over a Dry Surface and the Contact Angles. The pressure p inside
a thin liquid layer on a flat solid surface differs from the pressure p, in the gas by the amount of the capillary
differential p=po—0'62h/8x2 (o is the surface tension coefficient; X is the coordinate along the layer; and his
the thickness of the layer).

The equation of motion of the layer in the case of small Reynolds numbers under the action of capillary
forces can be written with the help of the hydrodynamical theory of lubrication as

o [o. 303h)_—__i’5
FAY TR A T

Non-steady-state solutions of this equation are investigated in the linear approximation in [4]. Let us con-
sider steady-state solutions in the nonlinear formulation. For a steady-state wave
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h = h(x — vt),
and the indicated equation is simplified to
(/3W)SPHIES = vh + K. € = z — v, K = const. (1.1)

The constant K =0 if the thickness of the layer h=0 for £>{,. This situation corresponds to the problem
in which the layer flows (v > 0) onto a dry surface or runs off the surface (v < 0).

Let us assign the inclination angle of the free boundary in the case of small thickness h,, and let us
investigate the solutions for which the free boundary is close to rectilinear
AhldE = —@pm, b = hp, (1.2)
d?h/dE? -0, h — oo
in the range of large thicknesses h.
We will select the quantity hy, extremely small from the point of view of the applicability of the hydro-

dynamical description. Then it is possible to suppose that the microscopic angle ay, is close to the static con-
tact wetting angle or the static hysteresis wetting angle. The problem formulated has a unique solution if v> 0.

The meaning of the problem (1.1) and (1.2) consists of the fact that it describes the surface profile in
some small region close to the edge of the liquid volume for different problems of the motion of macroscopic
liquid volumes. For example, in the case of the motion of a liquid adjoining a gas in a capillary the problem
(1.1) and (1.2) corresponds to a range of thicknesses small in comparison with the diameter of the capillary.
The complete solution can be found by the method of splicing.

The solution is sought in the form

dh/dE = (3uv/o)3u(s), s = In (hy/h). (1.3)
The problem (1.1) and (1.2) is reduced to the form '

vt w4t =1, , (1.4)
u = —a,,M-13, s =0; M = 3w/o,

u'uet >0, § » —oo.

Equation (1.4) is not changed upon a shift along s. Therefore, the solution which satisfies the condition at
infinity has the form '

u=u(g), z=s+C. (1.5)

The constant C is determined from the equation

w(C) = —a,M-15. (1.6)

We will determine the asymptotic expansion of u(z) as | z|— . To this end it is possible to use an itera-
tive process based on the fact that the principal term on the lefi-hand side of Eq. (1.4) as [z]— = in the case of
the specified condition at infinity is u'u?:

u}Hu?H 4wl +ou? u; =1 u,=0,i=0,1,2,...
Taking account of the three approximations, the asymptotic representation has the form

z nlz{— 2 . \
u(z):(3z)u3(1+méz~; FRRUIEL 12/5,:211 2] —4 o) (1.7

Equation (1.7) is applicable when [z|> 1, and its first term describes the run of u(z) at z ~0 in a qualita-
tively correct way.

Proceeding from (1.7), we will determine the form of the solution for different values of oM /3. First
of all, let us consider the case of the flow of a liquid onto a solid surface, v> 0. In this case u<0. The root C
of Eq. (1.6) varies from —w to the value C ~0 when ozmM‘i/8 changes from +« to 0. The difference of the solu-
tion u(s) from the first term of the expansion (1.7) is noticeably revealed only when C >-1 and only for the
values s ~0. For s <—1 this difference is always insignificant, and as s— — it tends to zero. Thus the detailed
behavior of u(z) for —1<z< 0 is not important for the determination of u(s) at Is|>1. It is sufficient to use the
first term of the representation (1.7) for the approximate determination of the root of (1.6). V
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In the case of a liquid running off, when v < 0, the situation is more complicated. The quantity u> 0. The
desired solution u(s) is obtained from u(z), z > 0, by a shift, It is clear that a solution exists only in the finite
region —C <s< 0. The quantity u~0 at s=—C. In connection with this fact the condition that |u'u| eS decrease
as |s| increases is meaningfully discussed only on a finite interval. This interval should be sufficiently large,
and consequently it is necessary that C >>1.

The approximate solution determined according to the first term of the asymptote (1.7) has the form

u=(3s — ai/M)"?; C = — al/(3M). (1.8

When o), >>3M > 0, the solution is asymptotically exact for all values of s. When a2 3|M|, the solu-
tion gives only a qualitative picture for the values s~0. However, it is possible to show that a more exact de-
termination of u(s) at s ~0 has meaning.

Let afn €3|M| In this connection it is possible to discuss only flowing on, since C ~1 in the problem of
running off, and the inclination angle of the free boundary becomes zero at a quite small height h ~2hy,.

The function u(s) varies significantly in the region —1< s < Q, i.e., the inclination angle of the free bound-
ary varies sharply in the height range h~hy, as the height h changes. This fact means that there is a sharp
jog on the free boundary — a microscopic "bump". The "bump" has a thickness of the order of a few molecules.
With the appearance of the "bump" it is possible to determine the microscopic contact angle only as to its order
of magnitude, since the inclination of the free boundary near the microscopic "bump" varies greatly. Of course,
only a qualitative description of the "bump" is possible because this is essentially a microscopic phenomenon.

In dimensional notation the condition for the appearance of the "bump" in the case of flowing on has the
form v

/o > ad,. 1.9)

The formula for the inclination angle of the free boundary has, on the basis of (1.8) and (1.3), the form

9 h \1/3 dh
a:(mgmu a lnm> o= — (1.10)

as a function of its height h above the solid surface.

According to the definition given above, the quantity hy, ~1077-10"¢cm. One has In(h/hyy) ~12 for mac-
roscopic thicknesses h ~ 1072-10"1 cm of the layer. As is evident from (1.10), the angle o varies weakly with
height in the macroscopic region. Due to this fact it can be shown that a distinctly expressed contact angle oc-
curs. :

According to Eq. (1.10), a nonzero macroscopic contact angle ¢ is exhibited on account of ‘the motion (v >
0) even if the equilibrium wetting contact angle is equal to zero, ay, ~0. We note that according to (1.9) there
is always a "bump" on the free boundary in the case of complete wetting.

In the case of running off of liquid from a solid surface, when v < 0, the angle ¢ drops off with height and
becomes zero at some rather large height. Upon a continuation of the solution the quantity h passes through a
minimum, and as X — —, the solution is close to a parabola, h"> 0. It has been shown above that the macro-

&<
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scopic contact angle in the case of running off exists only in a limited range of heights h. The conditions for
its existence are
9] v[p,/U<<oc$n, h & by exp (ao/9p | v]).

2. Splicing the Solution with the Meniscus. The asymptotic solution (1.7) permits effectively solving the
problem when the conditionh” —const > 0 as h— = is set and the constant quantity is small. A profile of con-
stant curvature (h" =const in the thin-layer approximation) is called a meniscus. The transition from (1.7) to
a meniscus of small curvature can be traced out by first investigating the exact solutions of the differential
equation (1.4). The substitution Y=udu/ds reduces it to the form dY/du=1/Y~u.

The integral curves of this equation are given in Fig. 1. When |u{>1, the curves are similar to portions
of the hyperbolas Y=1/u, which corresponds to (1.7). As |u| increases, the curves depart from the u axis,
and the parabola h" =const, i.e., the meniscus, corresponds to the limit |¥]— «. The solutionh"—0ass——c0
is the envelope of the family of solutions.

The substitution w=u? reduces Eq. (1.4) to the form
d*w/dz® + dw/dz = —2 sgn (W)} w, w = u® - (2.1)
We further consider the case of flowing on, v> 0. It is possible to show that in the case of running off
(v < 0) the solution of Sec. 1 is not compatible with a meniscus.

We will seek a solution in the vicinity of the asymptotic one, taking account of the two terms in (1.7),

w = (32251 + (2/9)z-'1n [z]) + wy, [w1[ < w. (2.2)

v

The function w; satisfies the equation

w;—{—wi—l——%—z“iwl<1——;—z—iln]z[)———o. @.3)
The solution of this equation which increases as z ——w is represented in the form
w1=cllz]i/3(1+§+—g;-’——z—l)e_z+...,[z]>>1, 2.4)
where c, is an arbitrary constant. It is possible to find the quantity c, after splicing.
As z ——o, the solution of (2.1) which corresponds to h"> 0 has the form
w = a;e~% + a, + w,. ‘ @2.5)

Now wy— 0 as z—~—c, Let us assume the quantity a, to be known. It is necessary for the existence of
the region of applicability of (2.2) that a ;«1. This fact is a fundamental restriction of the entire analysis. We
note that when «, > 1 there exists no region in which the inclination angle of the free boundary varies weakly
with the height. The condition a ;«1 corresponds to the fact that the occurrence of a dynamic contact angle is
possible.

The splicing of (2.2) and (2.5) permits determining immediately in the first approximation the quantity a‘2
and the splicing region z ~z,:
b = B2,y (32,07 (1 22 In 2 ) > 1 @.6)
Let us find w, in (2.5) in order to accomplish the asymptotic splicing. The function w, satisfies the equa-
tion
dPw,/dz? - dwy'ds = —21) ae~* I a,. 2.7
with an accuracy out to small quantities of the order of 1/z3.

The solution of this equation, which vanishes as z — —, has the form

— o Syt T
wgzv%{(%e —i—Z)(ln-iz——*z—lenv('i—{—}/—ée +1))T2V%12—e +11. (2.8)
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The representation (2.5) and (2.8) is applicable when |wy|«w. In this connection the region of its ap-
plicability overlaps the region of applicability of the representation (2.2) and (2.4). Let us consider values of
z such that

4077 L g, 12— 2] K |54 ).

Using one term of the expansion into a series in the small quantity a ,/a s* and two terms of the expan-
sion in (z—zx) in Eq. (2.8), as well as two terms of the expansion in (z—2zx) in the first term in (2.2), we re-
quire agreement of the representations (2.5), (2.8) and (2. 2) {2.4). At the same time we find the quantity ¢, in
(2.4) and obtain an equation for a,:

aqj—(o_uaa Ve, = (32 )2’3( + %—z:iln,z*l), 2.9

Within the framework of the accuracy with which the splicing was performed, the function as(e ;) can be
found asymptotically from (2.9) and (2.6) in the form

a = (31n (1/a1) + In In (’l/al) F6ln2 4 21n3 — 3)¥3, 2.10)

Accordmg to Eq 2.5) [with (1.3) taken into account] the quantity Vag: is proportlonal to the angle a,
which forms a meniscus with the solid surface, if one formally continues lt into the region h—0. The quantity
a4 is expressed in terms of the radius of curvature of the meniscus Ry as

‘ ay = 26C(hy,/Ro)(0/3uv)3; ay = (3uv/o)%) a,. 2.1
The quantity C is determined in agreement with (1.5).

We note that the characteristic height hg at which the transition occurs from the solution with an inclina-
tion angle, which slowly varies with respect to height, to the meniscus, on which the cosine of the angle varies
proportionally to height, is equal to hg™ 1/ ZaﬁRo, as follows from (2.6) and (1.5) [with (1.3) taken into account].

The condition of applicability of 2.10) is ¢ «1 in (2.11). I q, is not very small, then the rougher ap-
proximation (2.6) may give higher accuracy than (2.10), as usually happens in asymptotic solutions.

3. Flowing of a Liquid Layer onto a Surface Covered by a Thin Layer of Liquid. Let a liquid be moving
over a solid surface onto which a uniform layer of the same liquid of thickness h,, is deposited in advance.
Then the constant K =—vh,, in (1.1) and the first condition of (1.2) is replaced by the condition that in the limit
x-»» the layer becomes a motionless uniform one,

(o/3p)Rd*hid® = v(h — ko),
B’ >0, h— oo (z - —o0), (3.1)

h— ho, T — 0.

The coefficient j in Eq. (3.1) is introduced in connection with the fact that the problem under discussion
refers not only to the motion of a pure liquid over a film on a solid surface (j=1) but is also valid when the
free boundary is slowed down due to the effect of surface-active materials (j=4). In the case j=8 we obtain the
problem of the motion of a liquid over a free film of thickness h, both of whose boundaries are slowed down
under the action of surface-active materials. If in the latter case we convert, with the help of a Galilean trans-
formation, to a system of coordinates in which the liquid in the region h— « is motionless, then we obtain the
problem of the flow of a free liquid film into a meniscus (the Plateau boundary) of small curvature.

Let us consider the case of v> 0. It is possible to show that when v < 0 there is no solution of the bound~
ary-value problem (3.1). Having applied the substitution of variables (1.3) with hy, =h,,, we obtain

w'ut -+ uw'u? 4+ uu=1—e,
vuet - 0, § — —o0, 3.2)
u=0,s=0
in place of (8.1).
If one neglects the exponentially small terms as s ——, then we obtain from (3.2) the fact that the asymp-
tote of u as § —— is the same as that of the solution of Eq. (1.4), i.e., determined by Eqs. (1.5) and (1.7). The
constant C in (1.5) is determined by the condition u=0 at s =0. The constant C is found by means of numerical

calculations. It is numerically more convenient to solve the third-order equation (3.1) than (3.2), since the
integral curve of (3.2) encloses in a small neighborhood the origin of coordinates in the u, s plane. Numerical
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calculations have permitted finding C=0.61. At the same time it is possible to obtain from (1.3), (1.5), and
(1.7), taking two terms into account, an asymptotic expression for the inclination angle of the free boundary:

a = (9 /o) Alln (b/he) — 0.61 — (1/3) In (In (h/he) — 0.61) 113, 3.3)

As a comparison with the exaet numerical solution shows, the condition of applicability of the asymptotic
Eq. (3.3) is h> 3he. At h=3he the error of this formula isabout 10%. At h= 8hy, the error of Eq. (3.3) is less
than 29 and decreases with an increase in h.

Until now the asymptotic behavior of the inclination angle a was not known. It has not proven successful
to determine the nature of the limiting behavior of « from numerical calculations. The incorrect result ¢ —
const as h— « has been obtained in [5] from numerical calculations. Therefore, the final formula of [5] is in
error. A point of view similar to [5] has been expressed in [6], where the existence has been assumed of a
limiting angle of the meniscus with the surface as the curvature of the meniscus tends to zero. Actually, as is
evident from Eq. (3.3), no limiting inclination angle exists as h— «.

Let the liquid force the gas out of a capillary, whereby the surface of the capillary is covered by a film
whose thickness is much less than its diameter. For small angles ¢, the dependence of the angle on velocity is
given by Eqs. (2.10) and (2.11), where by hy, it is necessary to understand hw, and the quantity C=0.61. If the
value of a is insufficiently small, then it is better to use instead of (2.10) the analytically cruder formula
which follows from (2.6). If 2,5 1, then in general there is no contact angle. In this case continuation of the
meniscus as far as the solid boundary h=0 and up to the height of the film h=h,, gives significantly different
values of @, Consequently, the contact angle has an asymptotic meaning, and it is possible to determine it in
the limit of small values of the parameter a ;.

4. The Effect of van der Waals Forces on the Dynamic Contact Angle. The van der Waals forces can be
important on a small scale in the case of a small curvature of the free boundary. The problem of the flow of a
viscous film is discussed in [7] with the neglect of capillary forces. The taking of van der Waals forces into
account can be important for the case of a wetting liquid with a zero equilibrium contact angle if the velocity of
the motion is small.

For small inclination angles of the free boundary the effective pressure inside the layer obeys the equa-
tion

P == py — od®h/dxz?® 1+ A/6nh3.

The constant A takes account of the van der Waals forces (for example, see [8-10]). A< 0 forthe case of
complete wetting. With the van der Waals forces taken into account, Eq. (1.1) is complicated somewhat:

hs d d%h A
5 Z; (Gz;z _— W) = hvs (4.1)

Condition (1.2) remains in force as h— «. It is possible in the region of small thicknesses to require
h'— 0 as h—0, formally extending the solution right down to h=0.
In the dimensionless symbols £ and y

x = hp(o/3pv)'L, b = hny 4.2)
Eq. (4.1) will take the form

dsy g2 dy _ . A [ o\28 1
!isd—ga—'-y—d—g—y—()’ ﬁz—_in_a—(?z_w) ;712:‘ @.3)

The case §>>1 is interesting. In the range of small y it is possible to seek dy/d¢ in the form of a series
in -2, assuming the term y%™ in (4.8) to be small,

.g%=_é(1+%“+...)y2,y<<ﬁ (4.4)

It is possible to show that the asymptotic series in 82 is divergent. Taking more than two terms into
account has no practical meaning. In the region of large values of y the form of the solution agrees with the
investigations in Sec. 1:

y =3Iy — (1Y nlny — )3, y> p. C@.5)

221



Comparison of (4.5) and (1.10) with y ~ 8 permits evaluation of the constant in (4.5). The quantity c;~InB.
Consequently, the height h at which the inclination angle of the free boundary is close to zero is ~hy 8 with
B>1 instead of hy, with 8 =0.

Using Eq. (1.10), it is possible to show that for the possible values of the constant A [8] the value 81
only when ay<«1, where ¢, is the macroscopic contact angle. If the angle a, is small and the value of A is suf-

ficiently large, then one should substitute into Eq. (1.10) in place of the quantity hy,, defined to bea few molec-
ular diameters, the quantity

b = VIA|2n0(0/3p)'? 4.86)
which is ~ B times larger. o

According to Eqs. (4.2) and (4.4) and the definition of 82 in (4.3), for h«hy,
ko= |A|Brpv(z — z,). 4.7)

The so-called precursor film, which moves in front of a spreading liquid, has been observed in the case
of a very low wetting rate in experiments [1]. Up until now this phenomenon has remained unexplained [2].
Analyzing the two profiles of the precursor film given in Fig. 4 of [1], it is possible to determine that they are
described, within the limits of error of the experiments, by the curves h=c(t)/(x—xy, which corresponds to
(4.7). - We find from the data of [1] for the instant t =18 h after the start of the spreading that the quantity ¢ ~
4-1078 cm?, while the velocity v~5-10"7 cm. If one takes account of the values 1 =0.27 P and 0 =27.6 dyn/cm
[1], then we determine from (4.7) the reasonable value |A|~10"1% erg, which is in agreement with the typical
values of the constant A [8]. At the same time the quantity hy, ~10~% ¢m, according to (4.6). The length of the
precursor film, determined by the condition hy, > h>10-7 em, is equal to ~0.3 cm.
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